Non-(13)CO2 targeted breath tests: a feasibility study.
نویسندگان
چکیده
Breath tests allow a non-invasive and fast diagnostic of different specific enzymes' phenotypic functionality. Over the last decade several 13C-breath tests were successfully tested, with the (13)C-urea breath test being approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA). The use of other targets than labeled (13)CO2 in exhaled breath offers additional possibilities. High sensitivity analytical technologies, such as proton-transfer reaction time-of-flight mass spectrometry, enable the detection of different volatile targets in the low ppb (parts per billion) range in real-time.In the current study volunteers received 0.8 mg deuterated 2-propanol, which was converted to d3-acetone (m/z 62.08) by alcohol dehydrogenase. D3-acetone (m/z 62.08) appeared in exhaled breath concentrations up to 30 ppb (at maximum). Parallel consumption of ethanol seems to reduce the activity of the enzyme, resulting in approximately 15-30% reduction of the produced d3-acetone. Phenotypic determination of enzyme activities is important, since the functionality of enzymes is influenced by factors such as age, sex, life-style, diet, organ function, metabolism, etc, which cannot be entirely accounted for by genetic factors.
منابع مشابه
Assessment of Hepatic Detoxification Activity: Proposal of an Improved Variant of the 13C-Methacetin Breath Test
Breath tests based on the administration of a (13)C-labeled drug and subsequent monitoring of (13)CO2 in the breath (quantified as DOB - delta over baseline) liberated from the drug during hepatic CPY-dependent detoxification are important tools in liver function diagnostics. The capability of such breath tests to reliably indicate hepatic CYP performance is limited by the fact that (13)CO2 is ...
متن کاملDynamic carbon 13 breath tests for the study of liver function and gastric emptying
In gastroenterological practice, breath tests (BTs) are diagnostic tools used for indirect, non-invasive assessment of several pathophysiological metabolic processes, by monitoring the appearance in breath of a metabolite of a specific substrate. Labelled substrates originally employed radioactive carbon 14 ((14)C) and, more recently, the stable carbon 13 isotope ((13)C) has been introduced to ...
متن کامل13C-tryptophan breath test detects increased catabolic turnover of tryptophan along the kynurenine pathway in patients with major depressive disorder
Altered tryptophan-kynurenine (KYN) metabolism has been implicated in major depressive disorder (MDD). The L-[1-(13)C]tryptophan breath test ((13)C-TBT) is a noninvasive, stable-isotope tracer method in which exhaled (13)CO2 is attributable to tryptophan catabolism via the KYN pathway. We included 18 patients with MDD (DSM-IV) and 24 age- and sex-matched controls. (13)C-tryptophan (150 mg) was ...
متن کاملMechanisms linking metabolism of Helicobacter pylori to 18O and 13C-isotopes of human breath CO2
The gastric pathogen Helicobacter pylori utilize glucose during metabolism, but the underlying mechanisms linking to oxygen-18 ((18)O) and carbon-13 ((13)C)-isotopic fractionations of breath CO2 during glucose metabolism are poorly understood. Using the excretion dynamics of (18)O/(16)O and (13)C/(12)C-isotope ratios of breath CO2, we found that individuals with Helicobacter pylori infections e...
متن کاملSynthesis of ¹³C-lidocaine as a probe of breath test for the evaluation of cytochrome P450 activity.
(13)C-Labeled lidocaine, 2-di[1-(13)C]ethylamino-N-(2,6-dimethylphenyl)acetamide (1), was synthesized from [1-(13)C]acetic acid in six steps, as a probe for a breath test to evaluate in vivo cytochrome P450 activity. The measurement of (13)CO2 in breath was successfully performed following oral administration of (13)C-lidocaine 1 to mice.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of breath research
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2014